Bats

VIRGINIA BAT REMOVAL & CONTROL

service areas - NWCOA Bat Standards Compliant

NWCOA Bat Standards Compliant

Bat Removal in Virginia is our specialty. A couple of things we hear from our customers all the time is, “I have bats in my attic.” and “How do I get bats out of my attic?” Fortunately you’ve come to the right place. We can remove bats in your attic and in other places in your home such as walls, ceilings, floors, fascia, soffits, eaves, crawl space and more. Our company provides safe and humane bat removal, bat control, bat management and bat extermination (We really don’t exterminate bats they’re good for the environment!) throughout the Commonwealth of Virginia. All of our bat removal experts are NWCOA Bat Standards Compliant and trained. They have also successfully completed the WCT Training Group Bat Training Program. Never hire anyone who offers to trap bats or spray fumigants to get rid of your bat problem. Also, bats are good for the environment and should be protected – bat pest control exterminators are not the way to go and their processes may be illegal. We are Virginia’s top rated and best bat removal specialists. Let our professional bat experts help resolve your bat problems quickly and at a fair price. (If you are a wildlife removal or wildlife control company and would like to be listed on our site – call us at (434) 270-0488 or toll-free at (888) 893-1975.

Virginia Bat Removal Companies and Wildlife Control Technicians By Location

Click on the link below for a Virginia professional bat removal specialist in your area. Don’t see your Virginia city, town or county listed for bat removal? Call us at (434) 270-0488 or toll-free at (888) 893-1975.

Accomack County, Virginia Bat Removal
Albemarle County, Virginia Bat Removal
Alexandria County, Virginia Bat Removal
Alleghany County, Virginia Bat Removal
Amelia County, Virginia Bat Removal
Amherst County, Virginia Bat Removal
Appomattox County, Virginia Bat Removal
Arlington County, Virginia Bat Removal
Ashland, Virginia Bat Removal
Augusta County, Virginia Bat Removal
Barboursville, Virginia Bat Removal
Bath County, Virginia Bat Removal
Bedford County, Virginia Bat Removal
Bland County, Virginia Bat Removal
Bon Air, Virginia Bat Removal
Botetourt County, Virginia Bat Removal
Brunswick County, Virginia Bat Removal
Buchanan County, Virginia Bat Removal
Buckingham County, Virginia Bat Removal
Campbell County, Virginia Bat Removal
Caroline County, Virginia Bat Removal
Carroll County, Virginia Bat Removal
Central Virginia Bat Removal
Charlotte County, Virginia Bat Removal
Charlottesville, Virginia Bat Removal
Chesapeake, Virginia Bat Removal
Chester, Virginia Bat Removal
Chesterfield County, Virginia Bat Removal
Clarke County, Virginia Bat Removal
Craig County, Virginia Bat Removal
Culpeper County, Virginia Bat Removal
Cumberland County, Virginia Bat Removal
Dickenson County, Virginia Bat Removal
Dinwiddie County, Virginia Bat Removal
Elkton, Virginia Bat Removal
Essex County, Virginia Bat Removal
Fairfax County, Virginia Bat Removal
Fauquier County, Virginia Bat Removal
Floyd County, Virginia Bat Removal
Fluvanna County, Virginia Bat Removal
Franklin County, Virginia Bat Removal
Frederick County, Virginia Bat Removal
Fredericksburg, Virginia Bat Removal
Giles County, Virginia Bat Removal
Glen Allen, Virginia Bat Removal
Gloucester County, Virginia Bat Removal
Goochland County, Virginia Bat Removal
Grayson County, Virginia Bat Removal
Greene County, Virginia Bat Removal
Greenville County, Virginia Bat Removal
Halifax County, Virginia Bat Removal
Hampton, Virginia Bat Removal
Hampton Roads, Virginia Bat Removal
Hanover County, Virginia Bat Removal
Harrisonburg, Virginia Bat Removal
Henrico County, Virginia Bat Removal
Henry County, Virginia Bat Removal
Highland County, Virginia Bat Removal
Isle of Wight County, Virginia Bat Removal
James City County, Virginia Bat Removal
King & Queen County, Virginia Bat Removal
King George County, Virginia Bat Removal
King William County, Virginia Bat Removal
Lancaster County, Virginia Bat Removal
Lee County, Virginia Bat Removal
Loudoun County, Virginia Bat Removal
Louisa County, Virginia Bat Removal
Lunenburg County, Virginia Bat Removal
Luray, Virginia Bat Removal
Lynchburg, Virginia Bat Removal
Madison County, Virginia Bat Removal
Manassas, Virginia Bat Removal
Mathews County, Virginia Bat Removal
Mechanicsville, Virginia Bat Removal
Mecklenburg County, Virginia Bat Removal
Middlesex County, Virginia Bat Removal
Midlothian, Virginia Bat Removal
Montgomery County, Virginia Bat Removal
Nelson County, Virginia Bat Removal
New Kent County, Virginia Bat Removal
Newport News, Virginia Bat Removal
Norfolk, Virginia Bat Removal
Northampton County, Virginia Bat Removal
Northern Virginia Bat Removal
Northumberland County, Virginia Bat Removal
Nottoway County, Virginia Bat Removal
Orange County, Virginia Bat Removal
Page County, Virginia Bat Removal
Patrick County, Virginia Bat Removal
Petersburg, Virginia Bat Removal
Pittsylvania County, Virginia Bat Removal
Powhatan County, Virginia Bat Removal
Prince Edward County, Virginia Bat Removal
Prince George County, Virginia Bat Removal
Prince William County, Virginia Bat Removal
Pulaski County, Virginia Bat Removal
Rappahannock County, Virginia Bat Removal
Richmond, Virginia Bat Removal
Richmond County, Virginia Bat Removal
Roanoke County, Virginia Bat Removal
Rockbridge County, Virginia Bat Removal
Rockingham County, Virginia Bat Removal
Russell County, Virginia Bat Removal
Salem, Virginia Bat Removal
Scott County, Virginia Bat Removal
Shenandoah County, Virginia Bat Removal
Short Pump, Virginia Bat Removal
Smyth County, Virginia Bat Removal
Southampton County, Virginia Bat Removal
Southwest Virginia Bat Removal
Spotsylvania County, Virginia Bat Removal
Stafford County, Virginia Bat Removal
Staunton, Virginia Bat Removal
Suffolk, Virginia Bat Removal
Surry County, Virginia Bat Removal
Sussex County, Virginia Bat Removal
Tazewell County, Virginia Bat Removal
Tidewater Virginia Bat Removal
Virginia Beach, Virginia Bat Removal
Warren County, Virginia Bat Removal
Washington County, Virginia Bat Removal
Waynesboro, Virginia Bat Removal
Westmoreland County, Virginia Bat Removal
Williamsburg, Virginia Bat Removal
Wise County, Virginia Bat Removal
Wythe County, Virginia Bat Removal
York County, Virginia Bat Removal
Yorktown, Virginia Bat Removal

VIRGINIA BAT REMOVAL SERVICES – (434) 270-0488 or toll-free at (888) 893-1975 provides safe and humane bat removal,  bat control and bat exclusion services in the Richmond, Charlottesville, Roanoke, Salem, Williamsburg, Hampton, Newport News, Chesapeake, Norfolk, Portsmouth, and Virginia Beach Virginia areas. Our technicians are experts in the bat removal field and can give you peace of mind by safely ridding your home or business of all animal wildlife pests.

Introduction

Conservation and Public Education

Despite their ecological value, bats are relentlessly and unjustifiably persecuted. Bats are often killed because they live near people who needlessly fear them. These actions emphasize the need to educate the public on the reasons for bat conservation and why it is important to use safe, nondestructive methods to alleviate conflicts between people and bats. General sources of information on bats include states’ Cooperative Extension Services, universities, government environmental conservation and health departments, and Bat Conservation International (Austin, Texas). Except where control is necessary, bats should be appreciated from a distance — and not disturbed.

Identification and Range

Bats, the only mammals that truly fly, belong to the order Chiroptera. Their ability to fly, their secretiveness, and their nocturnal habits have contributed to bat folklore, superstition, and fear. They are worldwide in distribution and include about 900 species, second in number only to Rodentia (the rodents) among the mammals.

Among the 40 species of bats found north of Mexico, only a few cause problems for humans (note that vampire bats are not found in the United States and Canada). Bats congregating in groups are called colonial bats; those that live a lone existence are known as solitary bats.

The colonial species most often encountered in and around human buildings in the United States are the little brown bat, (Myotis lucifugus), the big brown bat (Eptesicus fuscus), the Mexican free-tailed bat (Tadarida brasiliensis), the pallid bat (Antrozous pallidus), the Yuma myotis (Myotis yumanensis), and the evening bat (Nycticeius humeralis).

Solitary bats typically roost in tree foliage or under bark, but occasionally are found associated with buildings, some only as transients during migration.

These include Keen’s bat (Myotis keenii), the red bat (Lasiurus borealis), the silver-haired bat (Lasionycteris noctivagans), and the hoary bat (Lasiurus cinereus). Excellent illustrations of all bats discussed herein can be found in Barbour and Davis (1979), Tuttle (1988), Geluso et al. (1987), and Harvey (1986).

Several species of bats have been included here, with significant interspecific differences that need to be clarified if well-planned, comprehensive management strategies are to be developed. Any problems caused by bats are limited to species distribution; thus animal damage control personnel need not be concerned with every species.

Colonial and solitary bats have obvious differences that serve to separate the species into groups. Much of the descriptive material that follows is adapted from Barbour and Davis (1979).

Colonial Bats

Little brown bat (Myotis lucifugus)

Recognition

forearm — 1.34 to 1.61 inches (3.4 to 4.1 cm)

wingspan — 9.02 to 10.59 inches (22.9 to 26.9 cm)

ears — 0.55 to 0.63 inches (1.4 to 1.6 cm)

foot — approximately 0.39 inches (1.0 cm); long hairs on toes extend beyond claws.

Color

Pale tan through reddish brown to dark brown, depending on geographic location. The species is a rich dark brown in the eastern United States and most of the west coast. Fur is glossy and sleek.

Confusion may occur with a few other “house” bat species. In the East, it may be confused with Keen’s bat (M. keenii), which has longer ears [0.69 to 0.75 inches (1.7 to 1.9 cm)] and a longer, more pointed tragus (the appendage at the base of the ear). In the West, it resembles the Yuma myotis (M. yumanensis), which has dull fur and is usually smaller. However, the Yuma myotis and little brown may be indistinguishable in some parts of the northwestern United States where they may hybridize.

Habits

This is one of the most common bats found in and near buildings, often located near a body of water where they forage for insect prey. Summer colonies are very gregarious, commonly roosting in dark, hot attics and associated roof spaces where maternity colonies may include hundreds to a few thousand individuals. Colonies may also form beneath shingles and siding, in tree hollows, beneath bridges, and in caves. Litter size is 1 in the Northeast; twins occasionally occur in some other areas. The roost is often shared with the big brown bat (E. fuscus) though the latter is less tolerant of high temperatures; M. keenii may also share the same site. Separate groups of males tend to be smaller and choose cooler roosts within attics, behind shutters, under tree bark, in rock crevices, and within caves.

In the winter, little brown bats in the eastern part of their range abandon buildings to hibernate in caves and mines. Such hibernacula may be near summer roosts or up to a few hundred miles (km) away. Little is known of the winter habits of M. lucifugus in the western United States.

The life span of little brown bats has been established to be as great as 31 years. The average life expectancy, however, is probably limited to only a few years.

Big brown bat (Eptesicus fuscus)

Recognition

forearm — 1.65 to 2.01 inches (4.2 to 5.1 cm)

wingspan — 12.80 to 13.78 inches (32.5 to 35.0 cm)

ears — with rounded tragus

Color

From reddish brown, copper colored, to a dark brown depending on geographic location. This is a large bat without distinctive markings.

Confusion may occur with the evening bat (Nycticeius humeralis) though the latter is much smaller.

Habits

This hardy, rather sedentary species appears to favor buildings for roosting. Summer maternity colonies may include a dozen or so and up to a few hundred individuals, roosting behind chimneys, in enclosed eaves, in hollow walls, attics, barns, and behind shutters and unused sliding doors. They also form colonies in rock crevices, beneath bridges, in hollow trees, and under loose bark. Litter size is 2 in the East to the Great Plains; from the Rockies westward 1 young is born.

E. fuscus frequently shares roosts with M. lucifugus in the East, and with M. yumanensis, Taderida, and Antrozous in the West. Males typically roost in smaller groups or alone during the summer.

The big brown bat is one of the most widely distributed of bats in the United States and is probably familiar to more people than any other species. This is partially due to its large, easy-to-observe size, but also to its ability to overwinter in buildings (attics, wall spaces, and basements). Its close proximity to humans, coupled with its tendency to move about when temperature shifts occur, often brings this bat into human living quarters and basements in summer and winter. Big browns also hibernate in caves, mines, storm sewers, burial vaults, and other underground harborage. While E. fuscus will apparently travel as far as 150 miles (241 km) to hibernacula, the winter quarters of the bulk of this species are largely unknown.

Big brown bats may live as long as 18 years.

Mexican free-tailed bat (Tadarida brasiliensis)

Recognition

forearm — 1.42 to 1.81 inches (3.6 to 4.6 cm)

wingspan — 11.42 to 12.80 inches (29.0 to 32.5 cm); long narrow wings

tail (interfemoral) membrane — does not enclose the lower one-third to one-half of the tail, hence the name free-tailed

foot — long, stiff hairs as long as the foot protrude from the toes.

Color

Dark brown or dark gray. Fur of some individuals may have been bleached to a pale brown due to ammonia fumes from urine and decomposing guano.

Confusion is not likely to occur with other species that commonly inhabit human buildings.

Habits

T. brasiliensis forms the largest colonies of any warm-blooded animal, establishing sizable colonies in buildings, particularly on the West Coast and in the Gulf states from Texas east. Hundreds to thousands may be found in buildings or under bridges. It is primarily a cave bat in Arizona, New Mexico, Oklahoma, and Texas; buildings are used as temporary roosts during migrations. Litter size is 1.

Taderida often share roosts with other species. In the West, for example, they may be found in buildings with A. pallidus, M. yumanensis, and E. fuscus. Some males are always present in the large maternity colonies, but they tend to segregate in separate caves.

A few Taderida may overwinter in buildings as far north as South Carolina in the East and Oregon in the West. Most of this species migrate hundreds of miles to warmer climes (largely to Mexico) for the winter.

Pallid bat (Antrozous pallidus)

Recognition

forearm — 1.89 to 2.36 inches (4.8 to 6.0 cm)

wingspan — 14.17 to 15.35 inches (36.0 to 39.0 cm)

ears — large; widely separated and more than half as broad as long. The ears are nearly half as long as the combined length of the bat’s head and body.

eyes — large

Color

pale, upper parts are light yellow, the hairs tipped with brown or gray. Underparts are pale creamy, almost white. This large, light-colored bat is relatively easy to recognize.

Confusion with other species that commonly inhabit human buildings is not likely to occur.

Habits

Maternity colony size ranges from about 12 to 100 individuals. Roost sites include buildings, bridges, and rock crevices; less frequently, tree cavities, caves, and mines. Litter size is most commonly 2. The roost is frequently shared with T. brasiliensis and E. fuscus in the West. While groups of males tend to segregate during the nursery period (sometimes in the same building), other males are found within the maternity colony.

An interesting feature of pallid bats is that they fly close to the ground, may hover, and take most prey on the ground, not in flight. Prey includes crickets, grasshoppers, beetles, and scorpions. They will also forage among tree foliage.

Pallid bats are not known to make long migrations, though little is known of their winter habits.

Yuma myotis (Myotis yumanensis)

Recognition

forearm — 1.26 to 1.50 inches (3.2 to 3.8 cm)

wingspan — about 9.25 inches (23.5 cm)

ears — 0.55 to 0.59 inches (1.4 to 1.5 cm)

foot — 0.39 inches (1.0 cm)

Color

Light tan to dark brown; underside is whitish to buffy.

Confusion may occur in the West with M. lucifugus, though the latter tends to have longer, glossier fur, and is larger. In the Northwest, hybridization occurs with M. lucifugus, making the species indistinguishable.

Habits

Maternity colonies, up to several thousand individuals, form in the summer in attics, belfries, under bridges, and in caves and mines. Litter size is 1. Males typically segregate during the nursery period and roost as solitary individuals in buildings and other suitable harborage.

M. yumanensis is more closely associated with water than is any other North American bat species. Nearly all roosts have open water nearby. This species is not as tolerant as M. lucifugus of high roost temperatures and will move to cooler niches within a building when temperatures rise much above 100o F (37.8o C).

M. yumanensis abandons maternity colonies in the fall, but its winter habitat is not known.

Evening bat (Nycticeius humeralis)

Recognition

forearm — 1.30 to 1.54 inches (3.3 to 3.9 cm)

wingspan — 10.24 to 11.02 inches (26.0 to 28.0 cm)

ears — with short, curved, and rounded tragus

Confusion may occur with the big brown bat (E. fuscus), which can be readily distinguished by its larger size. It bears some resemblance to the somewhat smaller little brown bat (M. lucifugus) but can be identified by its characteristic blunt tragus.

Color

Medium brown with some variation to yellow-brown in subtropical Florida. No distinctive markings.

Habits

Summer maternity colonies in buildings may consist of hundreds of individuals. Litter size is usually 2. Colonies also form in tree cavities and under loose tree bark. In the Southeast, T. brasiliensis commonly inhabits the same building with N. humeralis. This is one of the most common bats in towns throughout the southern coastal states. Very little is known about this species, and virtually nothing is known of its winter habitat except that it almost never enters caves.

Solitary Bats

Keen’s bat (Myotis keenii)

Recognition

forearm — 1.26 to 1.54 inches (3.2 to 3.9 cm)

wingspan — 8.98 to 10.16 inches (22.8 to 25.8 cm)

ears — 0.67 to 0.75 inches (1.7 to 1.9 cm); with a long, narrow, pointed tragus

Color

Brown, but not glossy; somewhat paler in the East.

Confusion may occur with M. lucifugus, which has glossy fur, shorter ears, and does not have the long, pointed tragus.

Habits

Excluding small maternity colonies (up to 30 individuals are on record), M. keenii are generally found singly in the East. Roosting sites include: behind shutters, under wooden shingles, sheltered entryways of buildings, in roof spaces, in barns, and beneath tree bark. In the West, this bat is known as a solitary species, roosting in tree cavities and cliff crevices. Litter size is probably 1. The roost is sometimes shared with M. lucifugus. The sexes probably segregate during the nursery period. In winter, these bats hibernate in caves and mines.

Red Bat (Lasiurus borealis)

Recognition

forearm — 1.38 to 1.77 inches (3.5 to 4.5 cm)

wingspan — 11.42 to 13.07 inches (29.0 to 33.2 cm); long, pointed wings

ears — short rounded

tail membrane — heavily furred on upper surface, with a distinctive long tail.

Color

Bright orange to yellow-brown; usually with a distinctive white mark on the shoulders.

Confusion may occur with the hoary bat (L. cinereus), which is frosted-gray in appearance and larger.

Habits

Red bats live solitary lives, coming together only to mate and migrate. Few people are familiar with this species. They typically spend summer days hidden in the foliage of deciduous trees. The number of young ranges from 1 to 4, averaging 2.3.

These bats often chase insects that are attracted to lights, such as street lamps. It is this behavior that most likely brings them in close proximity to people.

L. borealis is well-adapted for surviving drastic temperature fluctuations; it does not hibernate in caves, but apparently in trees. Some migrate long distances. During migration, red bats have been known to land on high-rise buildings and on ships at sea.

Silver-haired bat (Lasionycteris noctivagans)

Recognition

forearm — 1.46 to 1.73 inches (3.7 to 4.4 cm)

wingspan — 10.63 to 12.20 inches (27.0 to 31.0 cm)

ears — short, rounded, hairless

tail membrane — upper surface is sparsely furred on the anterior one-half.

Usually black with silver-tipped fur; some individuals with dark brown, yellowish-tipped fur.

Confusion sometimes occurs with the larger hoary bat (Lasiurus cinereus), which has patches of hair on the ears and wings, heavy fur on the entire upper surface of the tail membrane, and has a distinctive throat “collar.”

Habits

The silver-haired bat roosts in a wide variety of harborages. A typical roost might be behind loose tree bark; other sites include tree hollows and bird nests. This species is solitary except when with young. Additionally, there are unconfirmed reports that it is sometimes colonial (Dalquest and Walton 1970) and may roost in and on buildings. The litter size is 2. The sexes segregate through much of the summer range.

L. noctivagans hibernates in tree crevices, under loose bark, in buildings (including churches, sky scrapers, and wharf houses), hulls of ships, rock crevices, silica mines, and non-limestone caves. It also may migrate, during which time it is encountered in buildings (they favor open sheds, garages, and outbuildings rather than enclosed attics), in lumber piles, and on ships at sea.

Hoary bat (Lasiurus cinereus)

Recognition

forearm — 1.81 to 2.28 inches (4.6 to 5.8 cm)

wingspan — 14.96 to 16.14 inches (38.0 to 41.0 cm)

ears — relatively short, rounded, edged with black, and with fur

tail membrane — completely furred on upper surface

Color

Dark, but many hairs are tipped in white, giving it a frosted appearance. This bat also has a yellowish or orangish throat “collar.”

Confusion may sometimes occur with the much smaller silver-haired bat (Lasionycteris noctivagans), which lacks the fur patches and markings on the ears, markings on the throat, and has a tail membrane that is only lightly furred on the upper surface.

Habits

Hoary bats generally spend summer days concealed in tree foliage (often in evergreens), rarely enter houses, and are not commonly encountered by people. L. cinereus at their day roosts are usually solitary except when with young. The litter size is 2. The sexes segregate through most of the summer range.

This is one of the largest bats in North America, a powerful flier, and an accomplished migrant. Records indicate that some L. cinereus may hibernate in northern parts of their range.

Food Habits

Bats in North America are virtually all insectivorous, feeding on a variety of flying insects (exceptions among house bats were noted previously). Many of the insects are harmful to humans. While there must be some limitations based on such factors as bats’ body size, flight capabilities, and jaw opening, insectivorous bats apparently consume a wide range of prey (Barbour and Davis 1979). The little brown bat’s diet includes mayflies, midges, mosquitoes, caddis flies, moths, and beetles. It can consume insects equal to one-third of its body weight in 1/2 hour of foraging. The big brown bat may fill its stomach in about 1 hour (roughly 0.1 ounce per hour [2.7 g/hr]) with prey including beetles, moths, flying ants, true bugs, mayflies, caddis flies, and other insects. The nightly consumption of insects by a colony of bats can be extremely large.

General Biology, Reproduction, and Behavior

Most North American bats emit high frequency sounds (ultrasound) inaudible to humans and similar to sonar, in order to avoid obstacles, locate and capture insect prey, and to communicate. Bats also emit audible sounds that may be used for communication between them.

Bats generally mate in the fall and winter, but the female retains the sperm in the uterus until spring, when ovulation and fertilization take place. Pregnant females may congregate in maternity colonies in buildings, behind chimneys, beneath bridges, in tree hollows, caves, mines, or other dark retreats. No nests are built. Births typically occur from May through July. Young bats grow rapidly and are able to fly within 3 weeks. Weaning occurs in July and August, after which the nursery colonies disperse.

Bats prepare for winter around the time of the first frost. Some species migrate relatively short distances, whereas certain populations of the Mexican free-tailed bat may migrate up to 1,000 miles (1,600 km). Bats in the northern United States and Canada may hibernate from September through May. Hibernation for the same species in the southern part of their range may be shorter or even sporadic. Some may fly during warm winter spells (as big brown bats may in the northeastern part of the United States). Bats often live more than 10 years.

In response to a variety of human activities, direct and indirect, several bat species in the United States have declined in number during the past few decades. Chemical pesticides (particularly the use of persistent and bioaccumulating organic pesticides) have decreased the insect supply, and contaminated insects ingested by bats have reduced bat populations. Many bats die when people disturb summer maternity roosts and winter hibernacula. Vandals and other irresponsible individuals may deliberately kill bats in caves and other roosts. Even the activities of speleologists or biologists may unintentionally disturb hibernating bats, which depletes fat reserves needed for hibernation.

Modification and destruction of roost sites has also decreased bat numbers. Sealing and flooding of mineshafts and caves and general quarrying operations may inadvertently ruin bat harborages. Forestry practices have reduced the number of hollow trees available. Some of the elimination of natural bat habitat may contribute to bats roosting in buildings.

Bat Damage and Damage Identification

Bat Presence

Bats often fly about swimming pools, from which they drink or catch insects. White light (with an ultraviolet component), commonly used for porch lights, building illumination, street and parking-lot lights, may attract flying insects, which in turn attract bats. Unfortunately, the mere presence of a bat outdoors is sometimes beyond the tolerance of some uninformed people. Information is a good remedy for such situations.

Bats commonly enter buildings through openings associated with the roof edge and valleys, eaves, apex of the gable, chimney, attic or roof vent, dormers, and siding.

Other openings may be found under loose-fitting doors, around windows, gaps around various conduits (wiring, plumbing, air conditioning) that pass through walls, and through utility vents.

Bats are able to squeeze through narrow slits and cracks. For purposes of bat management, one should pay attention to any gap of approximately 1/4 x 1 1/2 inches (0.6 x 3.8 cm) or a hole 5/8 x 7/8 inch (1.6 x 2.2 cm). Such openings must be considered potential entries for at least the smaller species, such as the little brown bat. The smaller species require an opening no wider than 3/8 inch (0.95 cm), that is, a hole the diameter of a US 10-cent coin (Greenhall 1982). Openings of these dimensions are not uncommon in older wood frame structures where boards have shrunk, warped, or otherwise become loosened.

The discovery of one or two bats in a house is a frequent problem. In the Northeast, big brown bats probably account for most sudden appearances. Common in urban areas, they often enter homes through open windows or unscreened fireplaces. If unused chimneys are selected for summer roosts, bats may fall or crawl through the open damper into the house. Sometimes bats may appear in a room, then disappear by crawling under a door to another room, hallway, or closet. They may also disappear behind curtains, wall hangings, bookcases, under beds, into waste baskets, and so forth. Locating and removing individual bats from living quarters can be laborious but is important. If all else fails, wait until dusk when the bat may appear once again as it attempts to find an exit. Since big brown bats may hibernate in the cooler recesses of heated buildings, they may suddenly appear (flying indoors or outdoors) in midwinter during a warm spell or a cold snap as they move about to adjust to the temperature shift.

Bat Roosting Sites

Bats use roosting niches that are indoors (human dwellings, outbuildings, livestock quarters, warehouses), semi-enclosed (loading docks, entrance foyers), partially sheltered (porches, carports, pavilions, highway underpasses, bridges), and open structural areas (window shutters, signs). Once there, active bats in and on buildings can have several economic and aesthetic effects, often intertwined with public health issues (Frantz, 1988). Unusual roosting areas include wells, sewers, and graveyard crypts. Before considering control measures, verify that bats are actually the cause of the problem.

Bat Rub Marks

Surface areas on walls, under loose woodwork, between bricks and around other bat entryways often have a smooth, polished appearance. The stained area is slightly sticky, may contain a few bat hairs, and is yellow-brown to blackish brown in color. The smooth gloss of these rub marks is due to oils from fur and other bodily secretions mixed with dust, deposited there as many animals pass repeatedly for a long period over the same surface. Openings marked in this way have been used heavily by bats.

Bat Noises and Sounds

Disturbing sounds may be heard from vocalizations and grooming, scratching, crawling, or climbing in attics, under eaves, behind walls, and between floors. Bats become particularly noisy on hot days in attics, before leaving the roost at dusk, and upon returning at dawn. Note that rustling sounds in chimneys may be caused by birds or raccoons and scratching and thumping sounds in attics and behind walls may indicate rats, mice, or squirrels.

Bat Guano and Bat Urine

Fecal pellets indicate the presence of animals and are found on attic floors, in wall recesses, and outside the house at its base. Fecal pellets along and inside walls may indicate the presence of mice, rats, or even roaches. Since most house bats north of Mexico are insectivorous, their droppings are easily distinguished from those of small rodents. Bat droppings tend to be segmented, elongated, and friable. When crushed, they become powdery and reveal shiny bits of undigested insect remains. In contrast, mice and rat droppings tend to taper, are unsegmented, are harder and more fibrous, and do not become powdery when crushed (unless extremely aged).

The droppings of some birds and lizards may occasionally be found along with those of bats. However, bat droppings never contain the white chalky material characteristic of the feces of these other animals.

Bat excrement produces an unpleasant odor as it decomposes in attics, wall spaces, and other voids. The pungent, musty, acrid odor can often be detected from outside a building containing a large or long-term colony. Similar odor problems occur when animals die in inaccessible locations. The odor also attracts arthropods which may later invade other areas of a building.

Bat guano may provide a growth medium for microorganisms, some of which are pathogenic (histoplasmosis, for example) to humans. Guano accumulations may fill spaces between walls, floors, and ceilings. It may create a safety hazard on floors, steps, and ladders, and may even collapse ceilings. Accumulations also result in the staining of ceilings, soffits, and siding, producing unsightly and unsanitary conditions.

Bats also urinate and defecate in flight, causing multiple spotting and staining on sides of buildings, windows, patio furniture, automobiles, and other objects at and near entry/exit holes or beneath roosts. Bat excrement may also contaminate stored food, commercial products, and work surfaces.

Bat urine readily crystallizes at room temperature. In warm conditions under roofs exposed to sun and on chimney walls, the urine evaporates so quickly that it crystallizes in great accumulations. Boards and beams saturated with urine acquire a whitish powderlike coating. With large numbers of bats, thick and hard stalactites and stalagmites of crystallized bat urine are occasionally formed.

Although the fresh urine of a single bat is relatively odorless, that of any moderate-sized colony is obvious, and the odor increases during damp weather. Over a long period of time urine may cause mild wood deterioration (Frantz and Trimarchi 1984). As the urine saturates the surfaces of dry wood beams and crystallizes, the wood fibers expand and separate. These fibers then are torn loose by the bats crawling over such surfaces, resulting in wood fibers being mixed with guano accumulations underneath.

The close proximity of bat roosts to human living quarters can result in excreta, animal dander, fragments of arthropods, and various microorganisms entering air ducts as well as falling onto the unfortunate residents below. Such contaminants can result in airborne particles of public health significance (Frantz 1988).

Ectoparasites and Other Arthropods Associated With Bats

Several arthropods (fungivores, detritivores, predators, and bat ectoparasites) are often associated with colonies of bats in buildings. Their diversity depends on the number of bats, age and quantity of excreta deposits, and season. Arthropods such as dermestid beetles (Attagenus megatoma) contribute to the decomposition of guano and insect remnants, but may also become a pest of stored goods and/or a nuisance within the living quarters. Cockroaches (for example, Blatta orientalis) attracted to guano may invade other parts of a building. Bat bugs (Cimex spp.) are sometimes found crawling on the surface of beams or around holes leading to secluded recesses used by bats. Bat ectoparasites (ticks, mites, fleas, and bugs) rarely attack humans or pets and quickly die in the absence of bats. Ectoparasites may become a nuisance, however, following exclusion of large numbers of bats from a well-established roost site. Area fumigation with a total release pyrethrum based aerosol may be an appropriate solution for arthropod knockdown within an enclosed space, but only after bats have departed. For long-term arthropod control, lightly dust appropriate surfaces (affected attic beams, soffits) with boric acid powder or diatomaceous earth; carefully read all product labels before using any pesticide. Note that neither rabies nor Lyme disease is transmitted by any arthropods associated with bats.

Public Health Issues Associated With Bats

Rabies—General Epidemiology Bats are distinct from most vertebrate pests that inhabit human dwellings because of the potential for transmitting rabies — a viral infection of mammals that is usually transmitted via the bite of an infected animal. Rabies does not respond to antibiotic therapy and is nearly always fatal once symptoms occur. However, because of the long incubation period (from 2 weeks to many months), prompt vaccination following exposure can prevent the disease in humans. Dogs, cats, and livestock also can be protected by periodic vaccinations. Bats are not asymptomatic carriers of rabies. After an incubation period of 2 weeks to 6 months, they become ill with the disease for as long as 10 days. During this latter period, a rabid bat’s behavior is generally not normal—it may be found active during the daytime or on the ground incapable of flying. Most human exposures are the result of accidental or careless handling of grounded bats. Even less frequently, bats in this stage of illness may be involved in unprovoked attacks on people or pets (Brass, pers. commun.; Trimarchi et al. 1979). It is during this stage that the rabid bat is capable of transmitting the disease by biting another mammal. As the disease progresses the bat becomes increasingly paralyzed and dies as a result of the infection. The virus in the carcass is reported to remain infectious until decomposition is well advanced.

Significance. Rabies is the most important public health hazard associated with bats. Infection with rabies has been confirmed in all 40 North American species of bats that have been adequately sampled in all of the contiguous United States and in most provinces of Canada. Figure 8 shows the frequency of bat species submitted for rabies testing in New York State over the last 12 years. While not a nationwide measure of human encounters with bats. Note that bats submitted for testing are often ill and/or easily captured. The numbers and species encountered will vary with the region of the  country; data are generally available from local and state health authorities.

Random sampling of bats (healthy and ill) indicates an overall infection rate of less than 1%. Finding a rabid bat in a colony does not imply that the remaining animals are rabid. In fact, the probability of immediately finding more than one additional infected bat in that colony is small.

Bats rank third (behind raccoons and skunks) in incidence of wildlife rabies in the United States (Krebs et al. 1992). In the last 20 years, however, there have been more human rabies cases of bat origin in the United States than of any other wildlife group. Furthermore, the disease in bats is more widely distributed (in all 48 contiguous states in 1989) than in any other species. In Canada, bats also rank third (behind foxes and skunks) in the incidence of wildlife rabies. Therefore, every bat bite or contact must be considered a potential exposure to rabies. While aerosol transmission of the rabies virus from bats in caves to humans and some other mammals has been reported, this is not a likely route of infection for humans entering bat roosts in buildings in temperate North America. Note that vampire bats are not a threat north of Mexico.

Histoplasmosis—General Epidemiology. Histoplasmosis is a very common lung disease of worldwide distribution caused by a microscopic fungus, Histoplasma capsulatum. Histoplasma exists in nature as a saprophytic mold that grows in soil with high nitrogen content, generally associated with the guano and debris of birds (particularly starlings, Sturnus vulgaris, and chickens) and bats. Wind is probably the main agent of dispersal, but the fungus can survive and be transmitted from one site to another in the intestinal contents of bats, and also in the dermal appendages of both bats and birds. The disease can be acquired by the casual inhalation of windblown spores, but infections are more likely to result from visits to point sources of growth of the fungus. Relative to bats, such sources include bat roosts in caves, barns, attics, and belfries, and soil enriched with bat guano.

Numerous wild and domestic animals are susceptible to histoplasmosis, but bats (and perhaps the armadillo) are the only important animal vectors. Unlike bats, birds do not appear to become infected with the fungus. Both the presence of guano and particular environmental conditions are necessary for H. capsulatum to proliferate. In avian habitats, the organism apparently grows best where the guano is in large deposits, rotting and mixed with soil rather than in nests or in fresh deposits. Specific requirements regarding bats have not been described, though bat roosts with long-term infestation are often mentioned in the literature.

While histoplasmosis in the United States is particularly endemic to the Ohio-Mississippi Valley region (which is also an area with the greatest starling concentration) and areas along the Appalachian Mountains, it is also found in the lake and river valleys of other states. Outside areas with “appropriate” environmental conditions, there also occur scattered foci with high infection rates usually associated with caves inhabited by bats or birds.

Significance. When soil or guano containing H. capsulatum is physically disturbed, the spores become airborne. Persons at particular risk of histoplasmosis of bat origin include spelunkers, bat biologists, pest control technicians, people who clean out or work in areas where bats have habitually roosted, and people in contact with guano-enriched soil — such as around the foundation of a building where guano has sifted down through the walls.

Infection occurs upon inhalation of spores and can result in a variety of clinical manifestations; severity partially depends on the quantity of spores inhaled. The infection may remain localized in the lungs where it may resolve uneventfully; this is the case for about 95% of the 500,000 infections occurring annually in the United States. Such infections are identified only by the presence of a positive histoplasmin skin test and/or calcified lesions on routine radiographs. Other individuals may have chronic or progressive lung disease requiring treatment. Less severe forms of these infections may be accompanied by fever, cough, and generalized symptoms similar to a prolonged influenza. Resolution of the disease confers a degree of immunity to reinfection. In addition, resolution confers varying degrees of hypersensitivity to H. capsulatum; as a consequence, massive reinfection in highly sensitized lungs may result in a fatal acute allergic reaction.

In a small percentage of chronic histoplasmosis cases, the fungus disseminates to involve multiple organ systems and may be fatal. This form is usually seen in young children (1 year or older) and in immunocompromised adults. In recent years, systemic infections have been increasing in frequency globally as an opportunistic infection of AIDS patients.

Legal Status

The lethal control of bats, even when there is a proven potential danger to humans, often is subjected to careful scrutiny and interagency coordination. A survey of federal legislative actions, court decisions, and agency interpretations concerning bats can be found in Bat Management in the United States (Lera and Fortune 1979).

Some states have laws that specifically mention bats, either providing or denying protection. Others have legislation that applies to bats only by interpretation, since bats may be considered nongame wildlife or indigenous state mammals. Some bats have protection as either federal or state-listed endangered species, but the same state may not protect other species of bats. Enforcement and public education must accompany legislation to accomplish the intended goal of protecting the public and saving endangered bats. Familiarity with the appropriate federal and state laws should precede any nuisance management activities.

Bat Damage Prevention and Bat Control Methods

Pre-management Considerations

Locating the Roost(s). A detailed inspection inside the building for bats or bat sign may be necessary to find specific roosts. Daytime is best, especially during the warmer part of the day. Bats roost in the most varied kinds of buildings and in every part from cellar to attic. Some types of buildings appear preferable (older houses, churches, barns, proximity to water) as do certain roost locations therein, especially areas with little disturbance, low illumination, little air circulation, and high temperatures. Often it is easy to locate bats, especially in warm weather in attics or lofts, where they may hang in clusters or side-by-side from the sloping roof lath, beams, and so forth. However, bats have the ability to find crevices and cavities, and if disturbed may rapidly disappear into the angles between converging beams, behind such beams or wallboards, into mortise holes on the underside of beams, and into the multilayered wall and roof fabrications. If bats cannot be openly observed, usually there are various interior and exterior signs of their presence. Often there are multiple roost sites within or on a single building.

Problem Assessment. Once it has been confirmed that bats are present, one must determine if there is damage, if there is a health risk, and if some intervention is warranted. There are circumstances in which “no action” is the correct action because of the beneficial role of bats. In cases where there is risk of contact, damage from excreta accumulations, stains, and so on, intervention may be necessary.

Timing. With the exception of disease treatment and removal of the occasional bat intruder, timing becomes an important planning consideration. Management procedures must not complicate an already existing problem and should emphasize bat conservation. Therefore, all interventions should be initiated before the young are born or after they are weaned and able to fly. Thus, the annual opportunity extends from about mid-August to mid-May for much of North America. Treatments might otherwise result in the unnecessary death of animals (especially young unable to fly) trapped inside, offensive odors, and attraction of arthropod scavengers.

Disease Considerations

Rabies — Preventive Measures. It should be noted that newspapers, television, and other mass media sometimes misrepresent the role of rabid bats as a risk to humans. However, the unfortunate recent (1983 to 1993) deaths of a 22-year-old man in Texas, a 30-year-old bat scientist in Finland, a university student in British Columbia, a 5-year-old girl in Michigan, a man in Arkansas, an 11-year-old girl in New York, and a woman in Georgia amply underscore the need to pay prompt attention to bat bites and other exposures.

Many rabies exposures could be avoided if people simply refrained from handling bats. Adults and children should be strongly cautioned never to touch bats with bare hands. All necessary measures should be taken to ensure that bats cannot enter living quarters in houses and apartments. Pet cats and dogs should be kept up-to-date in rabies vaccinations. This is also true for pets confined indoors, because contact with bats frequently occurs indoors. Valuable livestock also should be vaccinated if kept in buildings harboring bats or if in a rabies outbreak area (NASPHV 1993). While transmission of rabies from bats to terrestrial mammals apparently is not common, such incidents have been reported (Reid-Sanden et al. 1990, Trimarchi 1987). Dogs, cats, and livestock that have been exposed to a rabid or suspected-rabid animal, but are not currently vaccinated, must be either quarantined or destroyed.

Lastly, pest control technicians, nuisance wildlife control personnel, wildlife biologists, and other individuals at particular risk of contact with rabid bats (or other wildlife) should receive a rabies pre-exposure vaccination. This effective prophylaxis involves only three injections of rabies vaccine, which are administered in the arm during a month’s time.

Rabies — Treatment for Exposure. If a person is bitten or scratched by a bat, or there is any suspicion that bat saliva or nervous tissue has contaminated an open wound or mucous membrane, wash the affected area thoroughly with soap and water, capture the bat without damaging the head, and seek immediate medical attention. The incident should be reported promptly to local health authorities in order to arrange rabies testing of the bat.

If the bat is captured and immediate transportation to the testing laboratory is possible, and if immediate testing can be arranged, postexposure treatment may be delayed several hours until the test results are known. Postexposure prophylaxis must be administered immediately, however, if the bat cannot be captured, if prompt transportation to the laboratory is not possible, if the specimen is not suitable for reliable diagnosis, or if the test results prove positive for rabies.

The prophylaxis has little resemblance to that of many years ago. Today, it consists of one dose of rabies immune globulin (human origin) and one dose of rabies vaccine (human diploid cell) administered preferably on the dayas known or suspected to be contaminated with H. capsulatum should always wear protective masks capable of filtering out particles as small as 2 microns in diameter or use a self-contained breathing apparatus. In areas known to be contaminated, wear protective clothing and gloves that can be removed at the site and placed in a plastic bag for later decontamination via formalin and washing. Also, clean footwear before leaving the site to prevent spore dissemination in cars, the office, at home, and elsewhere.

Guano deposits and guano-enriched soils should not be unnecessarily disturbed. Dampening with water or scheduling outdoor work at a time when the ground is relatively wet will minimize airborne dust. Chemically decontaminate known infective foci with a spray of 3% formalin (see CDC 1977). To protect the environment, decontamination must be conducted in accordance with state and local regulations. Chemical decontamination of an “active” bat roost should be conducted only after the bats have been excluded or after bats have departed for hibernation.

Histoplasmosis – Treatment. most infections in normally healthy individuals are benign and self-limit-ing and do not require specific therapy (George and Penn 1986; Rippon 1988). Treatment with an antifungal agent may be prescribed in more severe cases; amphotericin B and/or oral imidazole ketoconazole are typically recommended depending on the specific nature of the infection.

Bat Repellents

While many chemical aromatics and irritants have been proposed and tested for bat repellency, efficacy has been very limited thus far.

Toxicants (not recommended)

No toxicants are registered for controlling bats.

Economics of Damage and Control

Virtually all bats are of some economic importance; those north of Mexico are beneficial because of their insectivorous diet which eliminates many insect pests of humans. The accumulated bat droppings, called guano, is rich in nitrogen and is a good organic fertilizer. At one time, bat guano was commercially mined in the Southwest; but its importance has declined due to reduced bat populations and the development of inorganic fertilizers. Bat guano is still considered a valuable fertilizer resource in some parts of the world (such as Thailand and Mexico).

No figures are available to determine the extent of damage caused by nuisance bats or the cost for their control. The problem is widespread in this and other countries.

Costs for remedial services are highly variable and can increase rapidly.

It is often difficult or expensive for the public to obtain the services of reliable, licensed wildlife control operators (WCOs). Many pest control operators (PCOs) have limited knowledge of basic bat biology and are apprehensive to work with bats. Select a qualified professional service that concentrates on the exclusion of live bats from a structure rather than on use of lethal chemicals.

Source: Prevention and Control of Wildlife Damage. Editors, Scott E. Hygnstrom, Robert M. Timm, Gary E. Larson. 1994. University of Nebraska-Lincoln. 2 vols.

We can safely and humanely remove, trap, control and exclude bats from your attic, walls, ceilings, insulation or other places in your Richmond or Charlottesville, Virginia home or business. Scratching sounds in your home? – No problem.

We can safely remove and dispose of remove bat guano (droppings) from your attic, clean and sanitize the area, and replace any damaged insulation. For additional information on bat removal and the removal of other pesky animal critters in the Richmond, Charlottesville, Williamsburg, Roanoke, Salem, Hampton, Newport News, Norfolk, Virginia Beach, Chesapeake, Portsmouth or Lynchburg Virginia home or business contact us at (434) 270-0488 or toll-free at (888) 893-1975 or visit us on the web at www.virginiaprofessionalwildliferemovalservices.com

Leave a Reply